Transition matrix

Continuous-time systems

For continuous-time state equations,

Definition

Suppose homogeneous system (unforced system) 𝐱̇=A(t)𝐱(t)\dot{\mathbf{x}} = A(t) \mathbf{x}(t), then, if a solution exists such that Q̇(t)=A(t)Q(t)\dot Q(t) = A(t) Q(t), then we may define transition matrix, ϕ(t,t0)=Q(t)Q1(t)\phi(t,t_0) = Q(t) Q^{-1}(t) such that 𝐱(t)=ϕ(t,t0)𝐱(t0)\mathbf{x}(t) = \phi(t, t_0) \mathbf{x}(t_0)

Properties

  1. ϕ(t0,t0)=I\phi(t_0,t_0) = I
  2. ϕ(t2,t1)ϕ(t1,t0)=ϕ(t2,t0)\phi(t_2,t_1)\phi(t_1,t_0) = \phi(t_2,t_0)
  3. 𝐱(t2)=ϕ(t2,t1)𝐱(t1)=ϕ(t2,t1)ϕ(t1,t2)𝐱(t2)\mathbf{x}(t_2) = \phi(t_2, t_1) \mathbf{x}(t_1) = \phi(t_2, t_1) \phi(t_1, t_2) \mathbf{x}(t_2)
    1. ϕ(t2,t1)ϕ(t1,t2)=I\phi(t_2,t_1)\phi(t_1,t_2) = I
    2. for all finite t1,t2t_1, t_2 on II, ϕ(t1,t2)=ϕ1(t2,t1)\phi(t_1, t_2) = \phi^{-1} (t_2, t_1)

Evaluation

Given transition matrix ϕ(t,t0)\phi(t,t_0), A(t)A(t) can be evaluated as follows 𝐱̇(t)=ϕ̇(t,t0)𝐱(t0)\dot{\mathbf{x}}(t) = \dot{\phi}(t,t_0)\mathbf{x}(t_0) Also, 𝐱̇(t)=A(t)𝐱(t)=A(t)ϕ(t,t0)𝐱(t0)\dot{\mathbf{x}}(t) = A(t)\mathbf{x}(t)= A(t) \phi(t,t_0) \mathbf{x}(t_0) Furthermore, ϕ̇(t,t0)=A(t)ϕ(t,t0)ϕ̇(t,t0)|t0=t=A(t)\begin{eqnarray} \dot{\phi}(t,t_0) = A(t) \phi(t,t_0) \\ \dot{\phi}(t,t_0)|_{t_0 = t} = A(t) \end{eqnarray}

Solution of forced system equations

Assume complete solution has form, 𝐱(t)=ϕ(t,t0)𝐟(t)\mathbf{x}(t) = \phi(t,t_0) \mathbf{f}(t) then 𝐱=ϕ(t,t0)𝐱(t0)+t0tϕ(t,λ)B(λ)𝐮(λ)dλy(t)=C(t)ϕ(t,t0)𝐱(t0)+t0tC(t)ϕ(t,λ)B(λ)𝐮(λ)dλ+D(t)𝐮(t)\begin{eqnarray} \mathbf{x} = \phi(t,t_0) \mathbf{x}(t_0) + \int_{t_0}^t \phi(t,\lambda) B(\lambda) \mathbf{u}(\lambda) d\lambda \\ y(t) = C(t) \phi(t,t_0) \mathbf{x}(t_0) + \int_{t_0}^t C(t) \phi(t,\lambda) B(\lambda) \mathbf{u}(\lambda) d\lambda + D(t) \mathbf{u}(t) \end{eqnarray}

Fixed systems

Constant AA matrix

General solution

ϕ(t,t0)=eA(tt0)\phi(t,t_0) = e^{A(t-t_0)} note, this is a Matrix exponential,

𝐱(t)=eA(tt0)𝐱(t0)\mathbf{x}(t) = e^{A(t-t_0)} \mathbf{x}(t_0)

Solution of the forced system equations 𝐱(t)=eAt𝐱(0)+t0teA(tτ)Bu(τ)dτh(t)=CeAtB1(t)+Dδ(t)\begin{eqnarray} \mathbf{x}(t) = e^{At} \mathbf{x}(0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau) d\tau \\ h(t) = Ce^{At} B 1(t) + D \delta(t) \end{eqnarray}

Discrete systems

In the case of discrete time state equations,

The transition matrix takes the form ϕ(k,i)A(k1)A(k2)...A(i)for ki+1\phi(k,i) \triangleq A(k-1) A(k-2) ... A(i) \quad \text{for } k \geq i+1

#incomplete


References

  1. https://crrl.poly.edu/6253/lectures/lect4.pdf
  2. https://en.wikipedia.org/wiki/State-transition_matrix
  3. https://people.engr.tamu.edu/spb/courses/linearsystems/ECEN605Lecture07.pdf
  4. https://faculty.washington.edu/ratliffl/teaching/2020_LinearSystems.pdf p 12